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The form and evolution of three-dimensional standing waves in deep water are 
calculated analytically from Zakharov’s equation and computationally from the full 
nonlinear boundary value problem. The water is contained in a basin with a square 
cross-section, when three-dimensional properties are significant because the natural 
frequencies of waves in the two directions perpendicular to pairs of sides are the same. 
It is found that non-periodic standing waves commonly follow forms of cyclic 
recurrence over long times. The two-dimensional Stokes type of periodic standing 
waves (dominated by the fundamental harmonic) are shown to be unstable to three- 
dimensional disturbances, but over long times the waves return cyclically close to their 
initial state. In contrast, the three-dimensional Stokes type of periodic standing waves 
are found to be stable to small disturbances. New two-dimensional periodic standing 
waves with amplitude maxima at other than the fundamental harmonic have been 
investigated recently (Bryant & Stiassnie 1994). The equivalent three-dimensional 
standing waves are described here. The new two-dimensional periodic standing waves, 
like the two-dimensional Stokes standing waves, are found to be unstable to three- 
dimensional disturbances, and to exhibit cyclic recurrence over long times. Only some 
of the new three-dimensional periodic standing waves are found to be stable to small 
disturbances. 

1. Introduction 
Standing waves may be generated at the free surface of deep water contained 

between parallel vertical walls. The most important feature is that their spectrum with 
respect to the coordinate perpendicular to a pair of walls is discrete, with wavenumbers 
which are integral multiples of n /L ,  where L is the distance between the walls. If the 
deep water is contained in a square basin of side L,  the wavenumbers in the 
longitudinal and transverse directions are both integral multiples of n/L .  

When waves are generated in a rectangular basin by a wavemaker at one end, cross- 
waves occur when the frequency of the wavemaker approximates twice one of the 
resonance frequencies of the transverse standing wave modes and the amplitude of the 
wavemaker exceeds a certain threshold. This is the phenomenon of parametric 
resonance, in which energy is transferred from the longitudinal waves to the transverse 
cross-waves through nonlinear interactions. Miles (1988) presented a theory for such 
cross-waves on the assumption that their amplitude is slowly modulated in time, and 
showed how the friction on the walls of the basin could be superimposed on the wave 

t See addendum. 
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evolution as a slow attenuation. The cross-waves are the result of a three-dimensional 
instability of an otherwise two-dimensional wave. In the present investigation, there is 
no forcing or friction in order to concentrate on the nonlinear interactions which are 
the essential part of the cross-wave evolution. The investigation is confined to standing 
waves, and the basin is chosen to be square to maximize the energy transfer between 
the longitudinal and transverse waves. 

A previous investigation (Bryant & Stiassnie 1994, denoted hereinafter by I) 
confined attention to nonlinear standing waves in two dimensions, one horizontal and 
one vertical. The stability and long time evolution were calculated for the Stokes type 
of standing waves dominated by the first harmonic, and it was shown in particular that 
the waves can be unstable to sideband modulations, when they evolve into a form of 
cyclic recurrence. New types of standing waves were investigated for which amplitude 
maxima occur at harmonics other than the first, under the influence of resonant 
interactions between these harmonics and the first harmonic. The new standing waves 
were shown to evolve into different forms of cyclic recurrence. Most results in the 
investigation were deduced both from Zakharov’s equation and from the fully 
nonlinear boundary value problem. 

Verma & Keller (1962) used perturbation expansions in an amplitude parameter to 
calculate the first nonlinear approximation to three-dimensional standing waves on 
water of uniform depth in a rectangular basin. Their linear approximation, in the 
notation of 92 below, is a free wave component of the form 

(1.1) a cos x cos r-ly sin wt, 

where r is the aspect ratio of the rectangle. Okamura (1984) calculated the regions of 
instability of two-dimensional standing waves on deep water to both two-dimensional 
and three-dimensional disturbances. He extended the calculations subsequently 
(Okamura 1985) to three-dimensional standing waves, using the same linear 
approximation (1.1) as Verma & Keller (1962). Okamura solved Zakharov’s equation, 
which is valid to the third order of nonlinear interaction, to make calculations up to 
waves steepnesses of 0.8, compared with wave steepnesses up to 0.15 here. He allowed 
the disturbance wavenumbers to vary continuously, rather than to take only values 
which are integral multiples of the fundamental wavenumbers of the basin, and did not 
include the full range of resonant tertiary interactions that occur when the basin is 
square. 

Nonlinear three-dimensional standing waves in a square basin are constructed in $2 
from two-dimensional free wave components parallel to the sides of the basin rather 
than from fully three-dimensional components such as (1.1). The two formulations are 
compared in 96, where it is shown that all standing waves constructed from (1.1) in a 
square basin may be reformulated in terms of the two-dimensional free wave 
components, but that the reverse is not true. 

In this paper, the terminology ‘Stokes type’ refers to waves for which the amplitudes 
of spatial harmonics have a ‘Stokes ordering’, i.e. are monotonically decreasing with 
order. 

2. Nonlinear boundary value problem 
The displacement of the water surface is written z = ~(x, y ,  t )  and the water motion 

is assumed to be irrotational with the non-dimensional velocity potential #(x, y ,  z ,  t) ,  
where x,y are the two horizontal coordinates, z points vertically upwards from the 
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mean free surface, and t is time. The non-dimensional equations governing the 
irrotational motion of waves on the free surface of deep water are 

V2$ = 0, z < T k Y ,  4 (2.1 a) 

with T t - $ z + T x $ z  +Ty$y  = 0 on = T(X,Y,t), (2. I b) 

$t+v+;($:+$;+&) = 0 on z = r(x,y,t), (2.1 c) 

and IVqq-0, z+--co. (2.1 d )  

Lengths are made non-dimensional above with respect to L / x ,  so that the standing 
wave motion takes place between the vertical planes x = 0 and x = x, y = 0 and y = n. 
Times are made non-dimensional with respect to the inverse of the lowest linear 
frequency (ng/L)1’2 so that the dimensionless linear frequency equals unity. The side 
conditions are $x = 0 on x = 0 and x = n, and $v = 0 on y = 0 and y = x. 

One of the simplest nonlinear solutions is that for three-dimensional pure standing 
waves, that is, standing waves which are periodic in time. They consist of free wave 
components such as 

a,,,cosxcos t ,  ao,,cosycos C, a,o~cos4xcos2t, a0,,cos4ycos2f, ( 2 . 2 ~ )  

together with their bound wave components. Their Fourier series expansions (before 
truncation) are 

0 0 0 0  00 

= C C cos lxcos my(u,,, cos nwt + bzmn sin nut), (2.2b) 
Z=O m=O n=l+m mod 2 

and 
m ‘ x  oc 

$ = 2 C C cosZxcosmye~z*+m’~l’zz(c~mncosnwt+dz,, sinnwt), (2 .2~)  
1=0 m=O n=Z+m mod 2 

where Z+m+n is even, the coefficients almn, him,, cZmn, d,,, are constants, and w ( -  1) 
is the nonlinear frequency of the fundamental harmonic. The constraint that 1 + m + n 
is even arises from the values of these parameters in the free components (2.2a), and 
is associated with the invariance of 7 and q5 when x, y and wt  are all changed by n. 
Following I, the root mean energy 

is chosen as the measure of the wave amplitude. 

satisfy the linear dispersion relation 
It was described in I, 92.2, how wave components in the expansions (2.2b, c) which 

n2 = (12 + (2.4) 

can be excited resonantly and have amplitudes much larger than the amplitudes of 
other wave components with wavenumbers in their neighbourhood. The properties of 
the two-dimensional pure standing waves of this type for which n = 1,2,3 were 
investigated in I in some detail. The properties of the more general forms of pure 
standing waves of this type in three dimensions for which n = 1,2 are investigated here. 

The fixed point method described in I, 93.2, is used to find computationally the 
values of the coefficients aZmn, b,,,, cZmn, d,,, needed to satisfy the nonlinear boundary 
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conditions (2.1 b, c) to a given numerical precision (typically 
are rewritten 
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Also when (2.26, c) 

and 

c c a ,  

7 = C. C azm(t)cosZxcosmy, 
Z=O m=O 

( 2 . 5 ~ )  

m c o  

4 = c C. cz,(t) cos IX cos my e(Zz++m2)1’2~, (2.5b) 
Z=O m = O  

the time evolution method described in I, 13.3, computes the evolution of non-periodic 
standing waves. Fourier analysis of the fast time variation of the coefficients a,,, clm 
in (2.5 a, b), wave period by wave period, enables these expansions to be rewritten 

m o o c c  

7 = C C cos lx cos my(azmn cos nut + bzmn sin nut), ( 2 . 6 ~ )  
l = O  m=O n=O 

and 
m m m  

4 = C C C cos Ixcos my e(zz+m2)”2z(czmn cos n u t  + dzm, sin nut), 

where the coefficients azmn, blmnr cZmn, dZ,, are now functions of slow time. 

(2.6 b) 
Z=O m=O n=O 

3. Zakharov’s equation 

horizontal Fourier plane 
Zakharov’s third-order theory (Zakharov 1968) yields an evolution equation in the 

i = l//Icc Tt ) l ,  ,, , BT B, B, S(k + k ,  - k ,  - k,) ei(w+wl-w2-w,)t dk, dk, dk,, (3.1) 

where the new dependent variable B(k, t) is a free component of the wave field. The 
interpretation of this equation is summarized in I, 42.1, and the kernel TAT\, 2 ,  is given 
in Stiassnie & Shemer (1984). Note that all cases in the present paper deal with strict 
resonance conditions, for which Tg\, 2 ,  , has all symmetries mentioned by Krasitskii 
(1994), and the Hamiltonian nature of the problem is maintained. 

The wave component for an application to standing waves satisfying (2.4), with non- 
dimensional wavenumbers 

is written 

a t  

i, j, 4i, 4j 

B(k, t) = Bi(t)[S(k-i)+S(k+i)l+Bj(t)[S(k-j)+S(k+j)l 

+ Bai (t) [S(k - 4i) + S(k + 4i)]+ B, (t) [S(k - 4j) + S(k + 4j)], (3.2) 

where i, j are the unit vectors in the x, y-directions. (It should be noted that the choice 
of free components with wavenumbers i, j differs from the choice used previously, given 
in (1.1). The two descriptions are compared in 56.) The dependent variable B(k, t )  is 
replaced by A(k, t) where 

(3.3) 
7c2 2 B$ = 2m1/2 A,,,, A,,, = a, + im’/’ b,, 

a,,, is the complex Fourier amplitude of the wave component with wavenumber m, and 
b,,, is the corresponding complex amplitude of the velocity potential on the free surface. 
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(Compare I, equation (2.14b) or Stiassnie & Shemer 1984, equations (2.12a, b).) 
Substitution of (3.2) into Zakharov’s equation (3. I) ,  ( with the superscript (2) omitted), 
yields 

dB. 
= [(q, j , ; ,  j + 2q,  -;, j ,  - j )  IB;Iz + 2(T,j, ; , j  + q‘ -j, ;, - j )  /Bj12] Bi dt 

+ [’(T, 4 i .  i, 4; + K ,  -4;. i, - 4 i )  IBJ2 + 2(K, 4 j ,  i ,  4 j  + T ,  -4j ,  i ,  - 4 j )  IBdj121 B; 

+ 2 q ,  - j , j ,  -j BF Bj. (3.4a) 

Evaluation of the coefficients, combined with the substitution (3.3), reduces (3.4a) to 

- 19+5d17 3 
IA4jl2Ai--A? A;. (3.4b) 

dt 8 ”  56 64 16 
- + d2 lA j1zAi+  

.dA. 1 
1 2  = --IA.(’A.+ 

The corresponding equation for Aj is 

dA. 1 -5+42/2 -19+52/17 3 
i d =  --IAjI2A.+ IA;I”j+ 64 (A4i(2Aj---Aj* A;.  (3.4c) 

16 dt 8 J 56 

Similarly, 

which reduces to 

dA 4( - 5 + 4  2/2) -19+52/17 
lA4j12A4i+ 32 IAjI2A4; - 6Azi A B  (3.5 b)  7 

- 4 (A4i(2A4; f i 4i - 
dt 

and the corresponding equation for A ,  is 

. dA,. 4( - 5 + 4  4 2 )  -19+52/17 
1- = -4 JA4jJ2A4j+ 1AJ2A4j+ 32 IAiI2Agj-6AGA,2;. ( 3 . 5 ~ )  7 dt 

4. Standing waves of Stokes type 
4.1. Periodic standing waves 

The standing waves of Stokes type are dominated by the fundamental harmonics with 
wavenumbers i , j ,  with the higher harmonics decreasing in magnitude in a Stokes 
ordering. The evolution equations (3.4b, c) for such waves are 

. d A .  1 -5+42/2 3 
I----! = - - J A . ) 2 A i +  IAj(2A;--A,* A; ,  

dt 8 ’  56 16 

3 
dt S J J  56 16 

A j - -  A; A; .  
. dA j -  1 -5+42/2  
1- - ---IA.lZA.+ 

(4.1 a) 

(4.1 b) 

Solutions of these equations describing periodic waves are given by 

A ,  = a,e-iQt+i& A .  = a , e - i Q t + i # j  
I 1  ’ J J  1 
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where a ,  aj, q5i, q5j, R are real constants, when (4.1 a, b) may be rewritten 
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(4.2a) 

(4.2 b) 

Equations (4.2a, b) admit the well-known two-dimensional Stokes standing wave 

a j=  0, Q = - l a 2  8 i 7  (4.3a) 
solutions (I, equation (2.14a)) 

oscillating end to end in the x-direction, and 

a,= 0, Q = -la2 
8 J ’  (4.3 b) 

oscillating end to end in the y-direction. They also admit two families of three- 
dimensional Stokes standing wave solutions 

45-8.\/2 
112 

a; = -0.30077a;, q5j = q5i, aj = k u i ,  52 = - 

and 
-3+82/2  7r 

q5j = q5i+ - 112 ’ 2 
a2 = 0.074 23a:, aj = f a ,  R = 

(4.3 c) 

(4.3 d )  

The standing waves (4.3 c) consist of an oscillation from one corner to the opposite 
corner with much less motion in the other two corners, and for the standing waves in 
(4.3d) an almost flat crest passes around each of the four sides in turn with an almost 
flat trough on the opposite side. 

The Fourier series expansion (2.2 b, c) for the three-dimensional Stokes standing 
wave solutions are calculated by the fixed point method of I, $3.2, to satisfy the fully 
nonlinear boundary conditions (2.1 b, c), using the Zakharov solutions (4.3 c, d )  as first 
approximations. The frequency w ,  expanded as a polynomial in the fundamental 
amplitude alOl over the range 0 < 6 < 0.15 (using the NAG least-squares Chebyshev 
polynomial approximation subroutine E02ADF), is found to have the leading terms 

w = 1.0000000-0.30077a~,,+ ... (4.4a) 

for the first family, and the leading terms 

w = 1.0000000+0.07421a~,1+ ... (4.4b) 

for the second family. These are consistent with ( 4 . 3 ~ )  and ( 4 . 3 4 ,  which gives 
confidence in the results because the two derivations are independent. 

4.2. Analytical solution of the evolution equations 
When the complex amplitudes in (4.1 a, b) are replaced by the real variables 

rl = (Ail2, r2 = IAjI2, r3 = A,Aj*+AT Aj, r4 = (AiAj*-ATAj)/ i ,  (4.5) 

it may be shown that 
rlt  = &r3 r4, r2t = -&r3 r4,  (4.6a, 6 )  
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where the t-subscript now denotes the derivative. It follows from (4.6a7 b) that 

r,  + r2 = Q,, 
from ( 4 . 6 ~ ~  c)  and (4.7a) that 

and from (4.6a7d) and (4.7a) that 

(4.7a) 

(4.7b) 

(4.7 c )  

where Q,, Q,, Q3 are constants. The sum of (4.76) and ( 4 . 7 ~ ) ~  using (4.5) and (4.7a), is 

r," + r," = 4r, r, = 4r, r, + Q, + Q3, 

from which Q3 = -Q2, Equation ( 4 . 6 ~ )  can then be rewritten 

21Qz }{ -r?+Q,r,- 
(25+82/2)(17-82/2) 

3136 { -"+ " r1-t2(25 + 8 4 2 )  
r?t = 

(4.8) 
where Q,, Q, are constants determined by the initial conditions in (4.7a, 6). 

Equation (4.8) is rewritten 

(25 + 8 2/2) (1 7 - 8 2/ 2) 21Qz C, = LQ2- 21Qz 
3136 7 '1 = iQ?+2(25+ 8 2/2) 7 2(17-82/2) 

c, = 

If Q, > 0, it can be seen that C, > C,, when the substitution u = (rl-Q~/2)/(C,)1~z 
yields 

1 du 

Cl ' 
t =  

u = sn ((C, Cl)lizt + F,,), 

r1 = lAf = ~ Q , + ( C 2 ) 1 / 2 s n ( ( C o C , ) 1 / 2 t + ~ ) , ~  

r ,  = IAjlz = $Ql - (Cz)1/2 sn ((C, C1)1/2 t + 41, J 
(4.10) 

where u = u, at t = 0, and 

If Q, < 0, then C, < C,, and the roles of C, and C, are reversed in the above 
calculations. Figure 1 shows graphs of the right-hand side of (4.9) for the three cases, 
from the top, 

(i) Q, = 0, C, = C, = iQ?, (ii) Q, =I= 0, C, C, =I= 0, (iii) Q, =I= 0, C, C, = 0, 

in which the constant Q, is a measure of the total energy and is therefore kept the same 
for all three curves. The first case is discussed in $4.4, the second case below, and the 
third case in $4.3. 

Phase-plane arguments indicate that the middle curve in figure 1 describes a periodic 
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FIGURE 1. The phase-plane diagram for (4.9), r:t =f(r,), at constant Ql, for three values of Q,. 
(i) Q, = 0,  C, = C, = fQ:; (ii) Q, =+ 0, C, C, + 0; (iii) Q, + 0,  cl c, = 0. 

solution for r ,  between the points A and C, because r4t = f i r , )  > 0 in this interval. 
These are the two points for which one of the bracketed quadratics in (4.8) and (4.9) 
is zero, which is equivalent to one of (4.7b) and ( 4 . 7 ~ )  being zero. The solution of (4.9) 
applicable to the middle curve is stated in (4.10). Also, if 

A ,  = (Ail eiBi, Aj = lAjl eiBj 

it may be deduced from (4.1 a, b) that 

’“ 8. = L Q  f--. 3 Q 2  

32r,’ J t  32r, 
8, = f Q ,  +- (4.11) 

The fully nonlinear time evolution of a particular example is calculated and 
compared with the results above, as a check on their validity. The example chosen is 
a two-dimensional standing wave in the x-direction, (4.3a),  with e = 0.1, on which is 
superimposed at t = 0 a two-dimensional standing wave in the y-direction, (4.3b),  with 
e = 0.01, at an initial phase difference of n / 4 .  The expansions (2 .5a,b)  are truncated 
so that they contain all wavenumbers (1,m) such that I+m < 5 with the exception of 
(0,O). This gives a system of 40 coefficients a,,, elm, whose evolution is calculated (I, 
5 3 . 3 )  with a local error tolerance of lo-”.  A Fourier analysis of the fast time variation 
of the coefficients produces the expansions (2 .6a,  b) in which the coefficients have slow 
time variation. 

The fully nonlinear solutions for a,,,, a,,,, which are the same as rii2 = IAJ, 

corresponding solutions in (4.10) when Ai = 0.1, Aj = 0.01 exp in/4 at t = 0. The solid 
curve is the fully nonlinear solution over 5000 wave periods, and the crosses at intervals 
of 50 wave periods are derived from (4 .  lo). The agreement is excellent, even though the 
numerical calculations leading to the solid curves in figure 2 (a,  b) are independent of 
the analytical calculations of the crosses in these figures. The excellent agreement gives 
confidence in the applicability of the Zakharov model to standing waves at the small 
but finite amplitude of the example, despite the neglect in the model of nonlinear 

) “ l I 2  = lAjl respectively in the Zakharov model, are compared in figure 2(a, b) with the 
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FIGURE 2. A comparison of the fully nonlinear solution for the amplitude of the first harmonic in (a) 
the x-direction and (b) the y-direction, drawn as solid curves, with the same amplitude calculated 
from the Zakharov model, shown as crosses. The initial condition consists of the two-dimensional 
standing wave of amplitude 0.1 in the x-direction at a phase difference of n/4 with a standing wave 
of amplitude 0.01 in the y-direction. 

resonant interactions of higher than tertiary order. Figure 2(a, b) also provides an 
excellent illustration of a nonlinear periodic interchange of energy between two 
dominant modes of oscillation, which in this case are the standing waves parallel to 
each pair of walls of the square cross-section of the basin. 

4.3. Stability of the three-dimensional Stokes standing waves 
The two families of three-dimensional periodic standing waves of Stokes type are given 
by (4.3 c) and (4.3 d) .  Both families satisfy (4.9) with rlt  = 0 so that the squares of their 
moduli lie at the point B of the lowest curve in figure 1. If a small perturbation is 
applied to the standing waves, their motion is governed by (4.9) with rlt P 0. The curve 
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describing the right-hand side of (4.9) is then obtained approximately by slightly 
raising the lowest curve of figure 1, since motion requires r;t 2 0, which must therefore 
have two roots in the neighbourhood of B. The motion described by the curve remains 
in the neighbourhood of B and the standing waves are therefore stable. 

The fully nonlinear time evolution of an example from each family was calculated 
as a check on the validity of their stability. The examples chosen were both for root- 
mean energy e = 0.1, integrated over 2000 wave periods, using the same program as 
that for figure 2. Neither example showed any instability. 

4.4. Three-dimensional instability of two-dimensional Stokes standing waves 
The two families, of two-dimensional periodic standing waves of Stokes type are 
described by (4.3a) and (4.36). Both families satisfy (4.9) with rlt = 0, and the squares 
of their moduli lie at the points D, 0 respectively of the highest curve in figure 1. If a 
small three-dimensional perturbation is applied to the standing waves, so that r ,  > 0, 
their motion is governed by (4.9) with rlt =!= 0. The curve describing the right-hand side 
of (4.9) is then obtained approximately by slightly lowering the highest curve of figure 
1 since, from (4.7u), Y, lies in the range 0 < r1 < Q, when r2 > 0, and r1 = Q1 at the 
point D. 

When the highest curve in figure 1 is slightly lowered, a three-dimensional 
perturbation of the Stokes standing wave (4 .3~)  is described initially by a point for 
which rZt > 0, rlt < 0, (4.7a), near but before D. The point moves along the curve with 
rl decreasing, rlt  < 0, r?t > 0, until it reaches the zero of rlt near 0. This behaviour is 
linearly unstable because r1 moves away from the neighbourhood of D, but r1 returns 
cyclically to the neighbourhood of D. The solution is described analytically by (4.10) 
with the appropriate initial conditions. 

The fully nonlinear time evolution of a particular example was calculated and 
compared with the results above, as a check on their validity. The example chosen is 
a two-dimensional Stokes standing wave in the x-direction, (4.3a), with e = 0.1, which 
is disturbed at t = 0 by a two-dimensional standing wave in the y-direction, (4.3 b), with 
6 = 0.0001, at an initial phase difference of n/4. The calculation was made with the 
same number of harmonics and to the same precision as that described in $4.2. 

The fully nonlinear solutions for a,,,, aOll, which are the same as r:IZ = JAJ, rgiz = lAjl 
respectively in the Zakharov model, are compared in figure 3(a,b) with the 
corresponding solutions in (4.10) when A, = 0.1, Aj = 0.0001 expix/4 at t = 0. The 
solid curves are the fully nonlinear solutions over 5000 wave periods, and the crosses 
at intervals of 50 wave periods are derived from (4.10). The agreement is excellent for 
the first 2000 wave periods, and the subsequent divergence occurs when one of the two 
components of the first harmonic is close to zero ( N although this divergence 
leaves the form of the evolution correct. The divergence does not occur in figure 2(a, b), 
suggesting that some higher-order resonant interactions neglected in the Zakharov 
model become significant when one of the two components of the first harmonic is 
close to zero. The figure provides further illustration of the nonlinear periodic 
interchange of energy between two dominant modes of oscillation. 

The exponential growth of lAjJ over the first 600 wave periods of figure 3 (b), while ]Ail 
remains almost constant in figure 3(a), illustrates the linear instability of the two- 
dimensional standing wave to the three-dimensional disturbance. The subsequent 
nonlinear modification of the unstable growth is modelled well by the solution to (4.9) 
corresponding to a slight lowering of the upper curve in figure 1. Equation (4.9) for the 
upper curve is 

rft = Co rf(Q1 - r J ,  
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FIGURE 3. A comparison of the fully nonlinear solution for the amplitude of the first harmonic in (a) 
the x-direction and (b) the y-direction, drawn as solid curves, with the same amplitude calculated 
from the Zakharov model, shown as crosses. The initial condition consists of the two-dimensional 
standing wave of amplitude 0.1 in the x-direction disturbed by a standing wave of amplitude 0.0001 
in the y-direction at a phase difference of n/4. 

which with (4.7a) has the solution 

where Q,  = 0.1, 6 = lo-*. The curves followed by the first 1800 wave periods of figure 
3 (a, b) are the square roots of these equations. The subsequent cyclic recurrence 
exhibited in figure 3 (a, b) is described by the more accurate nonlinear representation in 
the solution (4.10) of equation (4.9). 
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5. Standing waves with resonating first and fourth harmonics 
5.1. Periodic standing waues 

The new standing waves with resonating first and fourth harmonics are dominated by 
the fundamental and fourth harmonics at wavenumbers i, j ,  4i, 4j, with the remaining 
harmonics decreasing in magnitude in a Stokes ordering. The evolution equations 
(3.4b, c) and (3 .5b,c)  for such waves in the Zakharov model are 

- 19+5 2/ 17 
- + ' lAj[ 'A; + i- = -:(Ai('Aj+ 64 (A4j12A,-& AT A;, (5.1 a) 

dA, 
56 d t  

- 19+ 5 4 1 7  
)A4J2 Aj-& AT A;,  (5.1 b) 

64 
- + d2  1 A ;I2 Aj + . dAj - 

1------) .I AJ 'Aj+  
56 dt 

- 19+ 5 2/17 
/Aj/' A,;- 6A2.A:j, 

.dA . 4( - 5 + 4 li 2) 
]A= - ~ I A , ; I ~ A ~ ~ +  IA4jI2A4i+ 32 dt 

(5.1 c) 
and 

. dA4j 4 ( - 5 + 4 2 / 2 )  - 19+ 5 2/17 
( A J 2  A4j- 6A,TiA:i. 

32 1- = -41A,]'A,+ 7 IA4il' A4j + dt 
(5.1 d )  

Solutions of these equations describing periodic waves are given by 

where a ,  aj, a4;, aqi, $;, $j, $4i, $4jr Q are real constants. Equations (5.1a-d) may be 
rewritten 

a2 - a~j+&a;e2i(6/-$~) a, = 0, ( 5 . 2 ~ )  
- 5 + 4  \/2 - 1 9 t - 5 ~ ~ 1 7  

56 64 
0 + + a ; -  

and 

Equations ( 5 . 2 ~ - d )  admit the two-dimensional standing wave solutions (I, equation 

a4;/ai = &$, ( 5 . 3  a) 
(2.15)) 

a.  3 = a4j = 0, Q = --a2 8 1 )  

oscillating end to end in the x-direction, and 

oscillating end to end in the y-direction. 
For the above two-dimensional solutions, Zakharov's equation does not provide 

information about the phases (see g2.4 in I for more details). 
They also admit four distinct types of three-dimensional standing wave solutions. It 

will be shown that the first type, the fully three-dimensional standing waves, are 
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linearly stable to three-dimensional disturbances. The other three types have at least 
one component of the first or fourth harmonics missing and are either shown or 
expected to be linearly unstable to disturbances containing the missing component. 

The solutions for the first type of three-dimensional standing wave, in which the first 
and fourth harmonics have both x- and y-components present, are 

(5.4a) 

(3 - 2/2)/7 +( - 19 + 5 2/17)/32&2 a2 = a:, a2 = ati, - - - 
J 4J a: 16(3 - 2/2)/7 + (- 19 + 5 417)/32 & 6 ' 

- 19+5 d 1 7  
a:;, 64 

where the sign in the equation for D is in the same order as the numerator of the 
previous equation. There are four combinations of the signs in ( 5 . 4 ~ )  resulting from 
four combinations of the phase differences, but only two of these have solutions in 
which the amplitudes are real, namely 

(i) $j = $i, $4j  = q54i 

a; = a:, atj = a& 6 = 0.067392, 5 = 0.259600, Q = -0.299069a?, (5.4b) 
a; ai 

(ii) $j = q5i+fn, q54j = q54i+in 

a? = a:, a2 = ati, - a" - - 0.042 142, = 0.205285, SZ = 0.075293~3. ( 5 . 4 ~ )  
Ui" ai J 4 j  

Solutions of the fully nonlinear problem have been found which correspond to the first 
Zakharov solution (5.4b) and possibly to the second solution (5 .4~) .  Equations 
(5.2a-d) place no constraint on the phase differences between the first and fourth 
harmonics in the above Zakharov solutions. 

Fourier series expansions (2.2 b, c) for the above three-dimensional standing waves 
were sought by the fixed point method of I, $3.2, to satisfy the fully nonlinear boundary 
conditions (2.1 b, c), starting from the Zakharov solutions (5.46, c) as first approxi- 
mations. The simplest waves of this type are those in (i) above for which both 
components of the first and fourth harmonics have the same phase. Their frequencies, 
expanded as polynomials in the fundamental amplitude ulnl over the range 0 < E < 0.1 
(using the NAG subroutine E02ADF), are found to have the leading terms 

w = 1.0000000-0.299068~fn,+ ..., (5.4d) 

and their fourth harmonics have the leading term 

a4n2 = 0 . 2 5 9 6 0 4 ~ ~ ~ ~  + ... . (5.4e) 

The excellent agreement between (5.4b) and (5.44 e) gives confidence in the results 
because the two derivations are independent. (Equivalent standing wave solutions in 
which the amplitude ratio in (5.4b) is negative, corresponding to a phase difference of 
n, have been found to have the same excellent agreement with the Zakharov solutions.) 

Three fully nonlinear families of standing waves have been found which correspond 
partially to those described in (ii) above. The phases in the fully nonlinear standing 
waves are, in the first family, 

in the second family, 
$i = 0, q5j = fX ,  q54i = fn, q5 4j = 3 4 x 3  

q3i = 0, $j = fX,  $4i = gn, q5 4j = 171: 4 3 
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and in the third family, 
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(The phase $i is set equal to zero and the phase difference $ j -  q5i is chosen to be positive 
in each family.) It is noted that the phase differences between the x- and y-components 
of the first and fourth harmonics are all fn, in agreement with (5.4~) .  The frequency of 
the first of these standing waves, expanded as a polynomial in the fundamental 
amplitude alol over a range near t' = 0.05 (with the phase chosen as above so that b,,, 
is zero), is found to have the leading terms 

w = 1.00000+0.0718~~,,+ ..., 

(u;"2+b&2)1'2 = 0.1 12a1"1+..., (5.4g) 

(5.4f 1 
in reasonable agreement with (5 .4~) .  The x-component of its fourth harmonic has the 
leading term 

which does not agree with (5.4~).  It is not known why the fully nonlinear standing wave 
solutions for these three families are not completely consistent with the Zakharov 
s o h  tions. 

At the smallest values of 6, the fixed point method converges strongly towards 
solutions for the amplitudes of three-dimensional standing waves of this type, but fails 
to converge towards reproducible solutions for the corresponding phases. This is not 
a problem in the standing waves described by (5.4u,b) because the phase differences 
there are all fixed at 0 or n. It indicates that the phases of the fourth-harmonic 
components relative to the first-harmonic components are determined at a higher order 
of interaction than the corresponding amplitudes. 

In the second type of three-dimensional standing waves, one component of each of 
the first and fourth harmonics is missing. Either the first harmonic is in the x-direction 
and the fourth harmonic is in the y-direction, or vice versa. Their solutions are 

(5.5a) I & =  -11+52/17 
a; 109+52/17 ' 

1 19 + 95 $1 17 
Q 2 = -  

32(109+5t;17)a?' 
aj = a4i = 0, 

!% = k0.272369, 52 = -0.123 127u?, 
ai 

or the same with i a n d j  interchanged. Equations (5.2~-d) place no constraint on the 
phase difference between the fourth harmonic and the first harmonic in the above 
standing wave solutions. The only solutions of this type which have been found by the 
fully nonlinear calculations have phase differences 0 and n between the fourth and first 
harmonics, corresponding to the & signs respectively in (5.5~1). 

The Fourier series expansions (2.2h, c) for these three-dimensional standing waves 
are calculated by the fixed point method of I, 53.2, to satisfy the fully nonlinear 
boundary conditions (2.lb,c), using the Zakharov solution ( 5 . 5 ~ )  as a first 
approximation. The frequency w for the three-dimensional standing waves, expanded 
as polynomials in the fundamental amplitude alOl over the range 0 < E < 0.1 is found 
to have the leading terms 

w = 1.0000000-0.123130~~,,+ ..., (5.5b) 

and the fourth harmonic has the leading term 

aoJ2 = 0.272 369~,,, + . . . . (5.5c) 
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The excellent agreement between ( 5 . 5 ~ )  and (5.5b, c) gives confidence in the results 
because the two derivations are independent. 

In the third type of three-dimensional standing waves, one component of the first 
harmonic is missing. The first harmonic is either in the x-direction or in the y-direction, 
and the fourth harmonic has both components. The Zakharov solutions with real 
amplitudes are 

aj = 0, a&/a: = 0.044 067, = 0.012992, SZ = -0.124672a,2, (5.6) 

or the same with i a n d j  interchanged. The fully nonlinear calculations, using the 
Zakharov solution (5.6) as a first approximation, converged to other fully nonlinear 
solutions in the neighbourhood of (5.6), particularly that corresponding to (5.3 a), but 
failed to converge to a fully nonlinear solution that could be identified with (5.6). 

In the fourth type of three-dimensional standing waves, one component of the fourth 
harmonic is missing. The first harmonic has both components and the fourth harmonic 
is either in the x-direction or in the y-direction. Their solutions are 

a . = 0, a;/.," = 0.922812, = 0.155249, SZ = -0.287203af, (5.7) 

or the same with i a n d j  interchanged. The fully nonlinear calculations, using the 
Zakharov solution (5.7) as a first approximation, converged to other fully nonlinear 
solutions in the neighbourhood of (5.7), particularly that corresponding to (4.3 c),  but 
failed to converge to a fully nonlinear solution that could be identified with (5.7). 

5.2. Non-periodic solutions of the evolution equations 

41 aj? 

When the complex amplitudes in (5.1 a-d) are replaced by the real variables 

r1 = )Ail2, r ,  = )Aj/', r3 = A,A? +A* Aj, r4 = (AiAj* -A,* A j ) / i ,  1 
r5 = (A4J2,  r6 = r7 = A,,A,T,+A,*iA4j, r8 = (A4,A,T,--A~,A4,)/i,J 

(5.8a) 

from which 

it may be shown that 
r," + ri = 4r1 r,, 

rlt = &r3 r4, rZt = -$r3 r4, 

r; + rg2 = 4r, r6,  

25+82/2 -19+51/17 
(r5 - r6) r 4 ,  64 (r1- r2) r4 - 

( y 1 -  r2) r3 + 

112 
r3t = - 

1 7 - 8 4 2  -19+5417 
('5 - r6> r3? 64 112 

r4t = - 

(5.8b) 

(5.9a, b) 

(5.9c) 

(5.9d) 

rSt = 6r, r8, rst = - 6r, r8, (5.9e,f 1 
- 19+ 5 2/ 17 

( r1 -  r2) rs, 32 ('5 - r6> r8 - 
2(25 + 8 1/2) 

7 
r7t = - 

2(17-8 4 2 )  
7 

- 19+ 5 1/17 
0 . 1  - r , )  r7, 32 ('5 - r6> r7 + rst = - 

where the t-subscript denotes the derivative. 
It follows from (5.9a, b) that 

rl + r2 = Q,, 

r5+r6 = Q,, 
and from (5.9e,f)  that 

(5.9h) 

(5 .10~)  

(5.10b) 
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where Q,, Q, are constants. No analytical solutions of the full set of equations (5.9) 
have been found, but numerical solutions (using the NAG variable-order variable step 
backward differentiation integrator D02EBF) may be calculated without difficulty. 

The evolution equations can be solved analytically when the first harmonic remains 
in the x-direction, or in other words, 

Aj(t)  = 0 

for all t ,  satisfying (5.1 b) and its derivatives. This means that 

in ( 5 . 8 ~ )  and 

in (5.10a), showing that the first harmonic has a constant amplitude. Equations 
(5.9g, h) ,  with substitutions from (5.9e,f) and (5.10b), integrate to 

r,  = r3 = r4 = 0 

r i =  Qi 

2(25 + 8 2/2) -19+52/17 
r5(Q2 - ' 5 )  - 96 Q1 r5 + Q,: 21 

r; = (5 .11~)  

(5.11 6) 

in which Q3 is a constant of integration. Equation (5.9e) can then be rewritten 

21Q3 
16(25 + 8 ~ ' 2 )  (1 7 - 8 2/ 2) 7( - 19 + 5 2/ 17) 

rit  = 49 ( -rr+(Qz- 64(25+82/2) Q1)r5+2(25+82/2) 

21Q3 ) (5.11~) 7( - 19+ 5 2/17) 
x ( - r ' + ( Q z +  64(17-82/2) Q1)r5A2(17-82/2) ' 

where Ql, Q2, Q3 are constants determined by the initial conditions, through (5.10a), 
(5. lob) and (5.11~).  

The phase-plane diagram for (5.11 c) is of similar form to figure 1 except that the 
expressions containing Q ,  cause a loss of symmetry of the quartic curves about the 
centre B. Equation (5.1 1 c), like (4.9), has solutions in terms of elliptic functions, but 
unlike (4.9) the solutions are not expressible in simple form because of the lack of 
symmetry of the quartic curves. The symmetry-breaking expressions containing Q, are 
an essential part of the equation because they originate from the resonant interaction 
between the fourth harmonic and the underlying first harmonic. 

A solution of (5.1 1 c) is developed for a particular example, that of the evolution of 
the SA two-dimensional standing wave of I with E = 0.1 when a transverse standing 
wave with wavenumber 4 of amplitude 0.01 is superposed on it. The initial phase 
difference between the waves is set at n/4. The dominant harmonics of the SA wave are 
the first harmonic of amplitude 0.097043 and the fourth harmonic of amplitude 
0.023452, both being in the x-direction with the same phase, which is set equal to zero. 
In the notation of (5.1 a-d), the initial conditions are 

Ai = 0.097043, Aj = 0, = 0.023452, A ,  = 0.01 einI4, (5 .12~)  

which in ( 5 . 8 ~ )  become 

r5 = 0.023452', r6 = 0.000 1, ri = -r8 = 0.00023452 2/2. (5.12b) 

The constants in (5.1 1 c) are therefore 

Q, = 0.009417, Q ,  = 0.000650, Q, = 6.95 x lo-', (5 .12~)  
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FIGURE 4. A comparison of the fully nonlinear solution for the amplitude of the fourth harmonic in 
(a) the x-direction and (6) the y-direction, drawn as solid curves, with the same amplitude calculated 
from the Zakharov model, shown as crosses. The initial condition consists of the two-dimensional 
standing wave SA with 6 = 0.1 in the x-direction at a phase difference of rr/4 with a fourth-harmonic 
standing wave of amplitude 0.01 in the y-direction. 

and the roots r5 of the quartic polynomial in (5.1 1 c) are 

a1 = - 3  x 

a3 = 0.000607 = 0.0246', 

a2 = 1.4 x lop5 = 0.00372,\ 

a4 = 0.000929. J (5.12d) 

The first and third roots arise from (5.1 1 a)  and the second and fourth roots from 
(5.11 b). The solution of (5.11~) lies between the roots a2, a3 where the quartic 
polynomial is positive. The solution for = rki2 is drawn as crosses at intervals of 
20 periods in figure 4(a), and the solution for (A,I = riiz as crosses at intervals of 20 
periods in figure 4(b). 
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The fully nonlinear time evolution of this example is calculated as a check on the 
validity of the above results. The expansions (2.5 a, b) are truncated so that they contain 
all wavenumbers ( I ,  m) such that I+ m < 9 with the exception of (0,O). This gives a 
system of 108 amplitudes a,,,, elm, whose evolution is calculated (I, 53.3) with a local 
error tolerance of The fully nonlinear solution for (aio2 + bto,)1/2, which is the 
same as r:/* in the Zakharov model, is compared with it in figure 4(a), where the solid 
curve is the fully nonlinear solution. A similar comparison is made between the fully 
nonlinear solution for (a&, + bi4J1/* and r;'' in figure 4(b). 

Although the initial agreement in both figures is excellent, the fully nonlinear 
solution diverges from the Zakharov solution after about 100 wave periods. The two 
solutions have the same form at later times but they differ in the locations of the 
amplitude maxima and minima. The difference appears to be due to approximations 
in the Zakharov model. Although the deduction from (5.1 b) that there are standing 
wave solutions for which Aj(t)  = 0 for all t is confirmed by the fully nonlinear 
calculations, the associated deduction from (5.10a) that lA,(t)l remains constant is not 
confirmed by the fully nonlinear calculations. The quantity Q, is a measure of the 
energy of the first harmonic, and instead of remaining constant it is found to vary in 
slow time by about 1 YO in the fully nonlinear calculation. The quantity Q, is a measure 
of the total energy of the two components of the fourth harmonic, and in order that 
the total energy of the system remains constant it is found to vary in slow time by about 
15 YO in the fully nonlinear calculation. With Q,  and Q ,  constant in a local sense only, 
it is not surprising that the Zakharov solutions of (5.1 1 c) agree only locally in form 
with the fully nonlinear solutions. The variation over long times of Q, and Q, is 
probably due to higher-order resonant interactions neglected in the Zakharov model. 

5.3. Stability of the three-dimensional periodic standing waves 
There are four distinct types of new three-dimensional periodic standing waves with 
resonating first and fourth harmonics, given by (5.4a-c), (5.5a), (5.6) and (5.7). Only 
the first type is fully three-dimensional with both the x- and y-components of the first 
and fourth harmonics present. The other three types have at least one of these 
components missing. 

In the first type, both components of the first and fourth harmonics are not only 
present but the amplitudes in each of the pairs of components are equal (5 .4~) .  It was 
shown (84.3) for the Stokes type of standing waves that when both components of the 
first harmonic are present and equal in a periodic standing wave, the wave is stable to 
disturbances containing these components. This property is also true here, and was 
tested by calculating the fully nonlinear time evolution of perturbed examples of this 
first type at small to moderate root-mean energies e = 0.05, 0.1, 0.15. Each was 
integrated over 2000 wave periods, using the same program as that for figure 4(a, b), 
and none showed any instability. The typical time evolution consists of a slow time 
oscillation in antiphase of the two components of the first harmonic, and a slow time 
oscillation in antiphase, at a different frequency from the first harmonic, of the two 
components of the fourth harmonic. 

In the second type, only the first harmonic is in the x-direction and the fourth 
harmonic is in the y-direction, or vice versa. It was shown (94.4) for the Stokes type 
of standing waves that when one component in three dimensions of the first harmonic 
is missing from a periodic standing wave, the wave is linearly unstable to disturbances 
containing the missing component, although it returns cyclically near to the initial 
conditions. It can be expected therefore that the second type of new three-dimensional 
periodic standing waves (5.5 a)  is linearly unstable to three-dimensional disturbances 
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containing the missing components of the first or the fourth harmonics, with the 
possibility of cyclic recurrence. 

These properties were tested with a particular example, that of the evolution of the 
new three-dimensional wave of the second type ( 5 . 5 ~ )  with t = 0.1 when the only 
disturbance imposed on it is the numerical error in its calculation. The dominant 
harmonics of the wave are the x-component of the first harmonic with an amplitude 
0.0965 and the y-component of the fourth harmonic with an amplitude 0.0261, both 
with the same phase, which is set equal to zero. The fourth harmonic has a small x- 
component due to the quartic interaction of the first harmonic with itself. In the 
notation of (5.1 u-d), the initial conditions are 

A i  = 0.0965, Aj = 0.0, A,i = -0.000 1, A ,  = 0.026 1, (5.13) 

which in (5.8a) become initial conditions for rl ,  ..., r8 .  The fully nonlinear time 
evolution of this example is similar to that illustrated in figure 4(a,  6) reversed, that is, 
the x-component of the fourth harmonic follows an evolution similar to figure 4(b )  and 
the y-component of the fourth harmonic similar to figure 4 (a). The y-component of the 
first harmonic remains zero for all time in the fully nonlinear time evolution, which 
means that the Zakharov solution is given by (5 .11 c). It is found to diverge from the 
fully nonlinear solution to the same extent as is illustrated in figure 4(a ,  b) and for the 
same probable reasons. These calculations show that the new three-dimensional wave 
of the second type (5.5a) with E = 0.1 is linearly unstable, with the instability in the 
present example arising only in the fourth harmonic. It does not occur in the first 
harmonic in this example because the y-component of the first harmonic is exactly zero 
initially, and the instability is never seeded. Cyclic recurrence occurs in this example, 
with the time evolution returning close to the initial conditions. 

By allowing the disturbance to arise from numerical error in the example above, no 
opportunity was given for instability to occur in the first harmonic. For this reason, a 
more general example was tested, that of the evolution of the new three-dimensional 
wave of the second type (5.5a) with e = 0.1 when it is seeded with a periodic 
disturbance in the y-component of the first harmonic of amplitude 0.0001. The initial 
phase difference between the two components is set at x/4. In the notation of (5.1 u-d), 
the initial conditions are 

A; = 0.0965, Aj = 0.000 1 eini4, A,; = -0.000 1, A, = 0.026 1, (5.144 

which in ( 5 . 8 ~ )  become initial conditions for r,, ..., r8 .  The set of equations (5.9) is 
solved numerically, and the solutions for 

/Ail = r i /2 ,  (Aj /  = r i /2 ,  (A,i( = r;I2, (A,( = rii6 (5.14b) 

are drawn as crosses at intervals of 20 periods in figure 5(a-d) respectively. 
The fully nonlinear time evolution of this example was calculated as a check on the 

validity of the above results, using the same program as that described for figure 4(u ,  b). 
The fully nonlinear solutions for 

(a?0l + b;ol)1i2, (&, + bill)l’z, (a%oz + b%oz)1i2, (a& + b&2)1i2 
are drawn as solid curves in figure 5(u-d) respectively. 

Although the initial agreement in the figures is excellent, the fully nonlinear 
solution diverges from the Zakharov solution in the first harmonic after about 1100 
wave periods and in the fourth harmonic after about 100 wave periods. The divergence 
appears to be due to approximations in the Zakharov model. If figures 2(a, b) and 
3(a, b)  are compared with figure 4(a ,  b), it can be seen that the agreement between the 
fully nonlinear evolution and the Zakharov evolution persists over much longer times 
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FIGURE 5(u,b). For caption see facing page. 

when it occurs predominantly in the first harmonic rather than in the fourth harmonic. 
It is interesting that this property is still true in figure 5 (a-d) when the evolution occurs 
simultaneously in both the first and fourth harmonics, which indicates that the 
nonlinear interactions between the first and fourth harmonics are much weaker than 
the nonlinear interactions between the components of either of the harmonics. Figure 
5(a-d) confirms that the new three-dimensional wave of the second type ( 5 . 5 ~ )  with 
F = 0.1 is linearly unstable to disturbances containing any of the missing components 
of the first and fourth harmonics. 

The new three-dimensional wave of the second type ( 5 . 5 ~ )  with E = 0.05 is also 
linearly unstable, and exhibits cyclic recurrence over a much longer time than that in 
figures 4 or 5 ,  while the wave of this type with F = 0.15 exhibits cyclic recurrence over 
a much shorter time than that in figures 4 or 5.  Solutions for the new three-dimensional 
wave of the third type (5.6) and the fourth type (5.7) failed to converge and cannot 
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FIGURE 5.  (u, b) A comparison of the fully nonlinear solution for the amplitude of the first harmonic 
in (a) the x-direction and (b)  the y-direction, drawn as solid curves, with the same amplitude 
calculated from the Zakharov model, shown as crosses. (c ,  d )  A comparison of the fully nonlinear 
solution for the amplitude of the fourth harmonic in (c) the x-direction and ( d )  the y-direction, drawn 
as solid curves, with the same amplitude calculated from the Zakharov model, shown as crosses. In  
all cases, the initial condition consists of the new three-dimensional standing wave at B = 0.1 with the 
first harmonic in the x-direction at a phase difference of n/4 with a first harmonic of amplitude 0.0001 
in the y-direction. 

therefore be tested for stability. The failure to converge, and the behaviour of the 
second type above, together suggest that these waves are unstable also. 

5.4. Three-dimensional instability of the two-dimensional standing waves 
The two families of two-dimensional periodic standing waves with resonating first and 
fourth harmonics are described by ( 5 . 3 ~ )  and (5.3 b). A wave solution in the first family 
satisfies (5.1 1 c) with rSt = 0, with a value of r5 which lies at a point in the phase-plane 
diagram equivalent to D on the highest curve in figure 1. If a small three-dimensional 



86 P. J. Bryant and M .  Stiassnie 

perturbation is applied to the fourth harmonic of such a wave, so that r6 > 0, the 
motion is governed by (5.11 c) with rSt =I= 0. The curve describing the right-hand side of 
(5.1 1 c) is then obtained approximately by slightly lowering the highest curve in the 
phase-plane diagram similar to figure 1. For the reasons described in 54.4, the 
evolution of the perturbed standing wave (5.3~1) is described by a point which moves 
along the curve with r5 decreasing, rgt < 0, rit > 0, until it reaches the zero of r5t near 
0. This behaviour is linearly unstable with r, returning cyclically to the neighbourhood 
of its initial point. 

The fully nonlinear time evolution of a particular example was calculated and 
compared with the results above, as a check on their validity. The example chosen was 
a two-dimensional standing wave in the x-direction, (4.3a), with F = 0.1, which is 
disturbed at t = 0 by a two-dimensional standing wave in the y-direction, (4.3 b), with 
e = 0.0001, at an initial phase difference of n/4. The calculation was made with the 
same number of harmonics and to the same precision as that described in $5.2. The 
initial behaviour of the two components of the fourth harmonic is similar to that 
illustrated in figure 3(a, b), with the x-component remaining almost constant for the 
first 200 wave periods while the y-component grows exponentially. The two 
components then enter into an approximate form of cyclic recurrence, with divergence 
between the fully nonlinear and Zakharov solutions similar to that shown in figure 
4(a, 6). 

6. Alternative formulation for three-dimensional standing waves 
The three-dimensional standing waves described in $5 2-5 consist of two-dimensional 

free wave components in the x- and y-directions (such as (2 .2~))  together with their 
three-dimensional bound wave components. The three-dimensional standing waves 
developed in previous investigations (see (1.1)) have free components in a square basin 
such as 

(6.1 a)  

together with their bound components. The two formulations are compared here. It is 
noted that 

Ull l  cos x cosy cos 21'4t, agg2 cos 4xcos 4y cos 25'4t 

alll cos xcosycos 211't = k c o s  (X +y)  cos 2114t +%cos (x-y) cos 2lI4t, (6.1 b) 
2 2 

which means that the three-dimensional standing wave component of amplitude nlll 
and unit wavenumber in both the x- and y-directions is the sum of two two- 
dimensional waves each of amplitude a,,,/2 and wavenumber 4 2  in two orthogonal 
directions. The three-dimensional wave oscillates in the square basin 0 < x < n, 
0 < y < n, while the two two-dimensional waves are placed more naturally in the 
square basin 0 < x-y < x, 0 < x+y < n, with slope parameters 1 / 4 2  that of the 
single wave. Equation (6.1 b) shows that the standing waves ( 4 . 3 ~ )  and (5.4b) may be 
reformulated in terms of three-dimensional free wave components such as (6.1 a) 
because the phases of the two two-dimensional standing waves in these solutions are 
the same, but that all other three-dimensional standing wave solutions in $04 and 5 
need the formulation used in those sections. 

The formulation based on two-dimensional free wave components such as ( 2 . 2 ~ )  is 
appropriate for a square basin because the frequencies of two-dimensional standing 
waves parallel to the two pairs of walls are the same. It would also be appropriate for 
rectangular basins in which the ratios of the lengths of the sides are 4,9, . . ., because the 
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ratios of the frequencies of two-dimensional standing waves parallel to the two pairs 
of walls are then integers. The fully nonlinear and Zakharov theories using the free 
wave components (6.1 a) are described now for a square basin to confirm the Zakharov 
theory in 8 3, and because this approach is necessary for general rectangular basins. 

The Fourier series expansions (before truncation) based on the free wave components 
(6.1 a) are 

cc 

7 = 5 5 C coslxcosmy(a~,,cosnwt+blm,sinnut), (6.2a) 
1=1 m=Zmodz n=lmodZ 

and 

m 

4 = ii: 5 c cos lxcosmye(lz+m*)l'z~ (elm, cos nut+ d,,, sin nut), (6.2 b) 

where I ,  m, n are either all even or all odd, the coefficients almn, bZ,,, elm,, dlm, are 
constants, and w( - 21i4) is the nonlinear frequency of the fundamental harmonic. 

Zakharov's equation (3.1) for standing waves with free components having non- 
dimensional wavenumbers 

has the wave component 

B(k, t) = B,,(t) [S(k - i-j) +S(k+ i - j )  + S(k- i + j )  + S(k + i+j)] 

l=Om=lmod2n=Zmod2 

kikj, $_4iF4j, 

+ Bd4(t) [S(k-4i-4j) + S(k + 4i-4j) + S(k-4i+4j) + S(k +4i+ 4j)],  (6.3a) 

where i, j are the unit vectors in the x, y-directions. The dependent variables B,,(t), 
B44(t)  are replaced by A,,(t), Ad4(t) where 

a,,, is the complex Fourier amplitude of the wave component with wavenumber rn, and 
b,,, is the corresponding complex amplitude of the velocity potential on the free surface. 
(Compare (3 .3)  or I ,  equation (2.146).) Substitution of  (6.3a) into Zakharov's equation 
(3 .1)  (with the superscript (2) omitted), yields 

.dB11 - 
1 - - [T+j, i+j, i+j, i+j + 2T+j, -i-j, i+j, -i-j + 'T+j, i-j, i+j, i-j dt 

(6.4a) 

i dB,, = [2T4i+4j, i+j, 4i+4j, i+j + 2qi+4j, -i-j, 4i+4j, -i-j dt 
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Evaluation of the coefficients. combined with the substitutions (6.3 b), reduces (6.4a, b) 
to 

(6.5 a) 
-19+52/17 

45-8 d221i41iill/2A11+ 128 21'4 lA4,I2All, 
i"=- dA 

dt 224 

Standing waves of Stokes type dominated by the first harmonic are given by ( 6 . 5 ~ )  
with 

A 11 = ale-iQt+i$, 1 A,, = 0, 

where a,, 52 are real constants, with the solution 

= -45-842 2ll4a; = -0.150385 x 2lI4a;. 
224 

This frequency correction agrees with Verma & Keller (1962), equation (36), and with 
Okamura (1985), equations (2.8), (2.9). When it is rewritten as 

- 52 
pi-- 

it is the same as (4.3 c), allowing for the rescaling of the frequency correction 52 and the 
slope parameter a,. 

Standing waves of the new type dominated by the first and fourth harmonics are 
given by (6 .5~1,  b) with 

A = a, e-iQt+i$, A - e-ZiM+i$, 
11 > 4 4 -  4 3 

where a,, a,, $1, $,, 52 are real constants, with the solution 

52 = -0.149535 x 2'I4a;, )&I = 0.259600. 

This is the same as (5.4b) after allowing for rescaling. 
First integrals of the evolution equations (6.5a, b) show that the moduli [All!, lA141 

and the rates of change of the arguments of A,,, A,, are all constant. This is a 
consequence of the absence of any resonant interaction causing the transfer of energy 
between the first and fourth harmonics to the tertiary order. The absence of energy 
transfer suggests that the standing waves are stable to other periodic disturbances also. 
The fully nonlinear evolution over 2000 wave periods was calculated with a small 
disturbance applied at wavenumber 1 in the x-direction; it was found that the three- 
dimensional waves of the Stokes type and of the new type both remained stable. 

7. Discussion 
The smallest possible frequency for standing. waves in a square basin of side L is 

(gk)l" rad s-', according to the linear theory, where k = 7cL. Linear theory predicts 
that there is an infinite number of standing wave solutions with this frequency. 
Nonlinear (or exact) theory shows that there are only a few stable standing wave 
solutions with constant frequencies near (gk)lI2 rad s-l. The free wave components of 
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the stable standing wave solutions we have found, ( 4 . 3 ~ ,  d) and (5.4b), rewritten in 
dimensional form with q5i = 0, are 

1 (7.1 a) 

1 (7.1 b) 

7 = a cos kx cos w t  f a cos ky cos wt ,  

w = (gk)l” (1 - 0.300 77k2a2) ; 

7 = acos kx cos w t  f acos ky sin wt ,  

w = (gk)1/2(1 -0.07423k2a2); J 
7 = a cos kx cos w t  & a cos ky cos w t  f 0.259 60 (a cos 4kxcos 2wt f a cos 4ky cos 2 4  

w = (gk)’”( 1 - 0.29907k2a2). 1 
(7.1 c) 

The solution (5 .4~)  is not included here because of inconsistencies with the fully 
nonlinear solution (5.4f, g). As far as we are aware, only (7.1 a) has been described 
previously, rewritten in a formulation based on free wave components such as (6.1 a). 

For the three-dimensional standing waves when the slope parameter is 0.1, Okamura 
(1985, $3) concludes that three-dimensional disturbances applied to the wave given by 
(7.1a) above are unstable only on the resonance curves. His figure 2(a) shows no 
integer points on the curves, which is consistent with the stable behaviour in our 
nonlinear time evolution calculations of this wave. 

All two-dimensional standing wave solutions are unstable to transverse disturbances, 
when cross-waves are initiated spontaneously in practice to grow to become 
comparable in magnitude with the initial standing waves. The energy transfer between 
the original waves and the cross-waves then reverses until the original waves return 
close to their initial state, and the cycle is repeated. This is the phenomenon of cyclic 
recurrence. 

All three stable waves, given by (7.1a-C) are of equivalent ‘importance’ and one 
would expect to detect them in an appropriate experimental setting. 

The overall very good agreement between the results obtained from the Zakharov 
equation and the full numerical solution is a clear refutation of the claim by Pierce & 
Knobloch (1994) that the Zakharov equation needs to be corrected when applied to 
standing waves. 

M. S. acknowledges the support by the Fund for the Promotion of Research at the 
Technion. 

Addendum 
My dear friend, Dr Peter Bryant, died suddenly of heart failure on November 25 

1994, a few days after completing this paper. Peter Bryant was a mathematician who 
devoted his career to the study of water waves; a natural choice for a New Zealander, 
who grew up and lived near the ocean. His scientific works are published in leading 
international journals, a dozen of them in the Journal of Fluid Mechanics. I have had 
the privilege to collaborate with Peter during my recent sabbatical at the University of 
Canterbury and had been looking forward to his planned visit to Israel in April 1995. 
His early departure is a great loss, not only to his loving family and friends, but also 
to the international scientific community. M. S. 
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